
ON THE STABILITY OF A TRIVIAL SOLUTION OF A 
LINEAR SYSTEM WITH PERIODIC COEFFICIENTS 

(OB USTOICBIVOSTI TRIVIAL'NOBO UESBENIIA LINEINYKB SISTEW 

S PEBIODICBESKIllI KOEFFITSIENTAMY) 

PMm Vo1.22, No.5, 1958, ~8.646-656 

V.Y. STARZHINSKII 

(Yoscor) 

(Received 24 January 1956) 

We shall write down a system of n linear differential equations of the 

first order with periodic coefficients in the form of one vector diffe- 

rential equation 

dx 
- = A(t) x 
dt (O-1) 

Here x is a vector function, A(t) is a periodic (with a period o > 0) 

matrix function with real sectionally continuous elements: 

X 
x:7 : ( i.‘i h (I!) = I( Uij (1) :, Uij (t + 0) = Uij (t) (i, j = I , . ..I n) 

xl2 / 

It is well known [1,2 1 that the stability of a trivial solution of 
the system (0.1) depends on the roots of the corresponding characteristic 

equation 

det [X ((1)) - $,J e-. (-~- 1)~ {?n ~- n,:,n--1 -t_ . . . + (- ~)+*a~_~~ + (- I)*CC} = 0 
(0.2) 

where X(t) is the fundamental matrix of the system (O.l), X(O) = In (I,, 

is a unit matrix of n-th order). 'Ihe trivial solution of (0.1) is stable 

if all roots of the equation (0.2) are less than or equal to unity in 

magnitude, or, in the case of multiple roots which eqaul unity in magni- 

tude, if there exist simple elementary divisors of the matrix XM - pl,. 

In the opposite case, that is, if at least one of the roots is greater 

than unity in magnitude, or when a multiple root in absolute value equal- 

ling unity is accompanied by a non-simple elementary divisor of the above 

mentioned matrix, then the trivial solution of the system (0.1) is un- 

stable. 

'lhe constant term in equation (0.2) is given by the Liouville formula 

907 
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a = det X(w)= exp ispA dt (SPA (t) = $ aii (t) ) 
0 i=l 

If the following inequality U2 I, pp. g and 46) 

0 

c sp 24 (t) dt > 0 

Ii 

is satisfied, then det X(t) + + m when t + + =, and the trivial solution 

of the system (0.1) is unstable. 'lherefore, we shall .assume in what 

follows that 

w 

s 'spA(t)dt<O 

0 

It is well known ([3 I, p. 63) that if all eigenvalues of the symmetric 

matrix 

A (t) + A+(t) = IIoij (t) + aji (t)/l: 

for any t(O( t < 01 are non-positive (or positive), then the trivial 

solution of the system (0.1) is stable, (or unstable). 

let us now consider how to determine the regions of stability and in- 

stability in the spatial coefficients of equation (0.2). 

I. Let us begin with the system (0.1) written in the canonical form 

141 

$ = J,,H(t)x, J,m = (_OIm 21, H(t)=llhij(t)jIfm 

hij = hji (i, i = 1, . . .) 24 (1-l) 

If the characteristic equation for a system in canonical form happens 

also to be reciprocal, then we could expand it as follows 

P 
2m _ alp2m-l + a2p2m-2 - . . . + (- l)mampm + (- l)m-lam-~pm-l + - - - 

. . . + a,p2-alp + 1 = 0 (1.2) 

When m = 1 then the region of stability 6s the interval - 2 < al < 2 

and the regions of instability are the intervals - 00 < al < - 2 and 

2<al<00, whereas the points al = + 2 require some additional invest- 

igation [ 2 1. 

When m = 2, that is, for a canonical system of the fourth order, the 

region of stability is defined by the inequalities (see Liapunov [5 1 p.8) 
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- 2 < a2 < 6, 

4 (h-2) < a?<$(a2 

and is shaded in Fig. 1. 

+ q2 (1.3) 

Fig. 1. 

The region of instability is the region outside the curvilinear 

triangle, and the values of coefficients a1 and a2 which correspond to 

the edges of the triangle require additional investigation. It should be 

mentioned that the region a1 < - 4, a1 > 4, a2 < - 2, a2 > 6 is in the 

region of instability. 

When m > 3 the problem is much more complicated. Reference 16 1 gives 

a survey of the necessary procedures: here we shall present only a con- 

clusion of the Herglotz theorem [7 1. 

According to Herglotz, the necessary and sufficient conditions for 

non-repeated roots equal to unity in magnitude of the real symnetric 

polynomial (1.2) are obtained from the positive quadratic form 
ZWl-1 

2 Sk-_lik& b&k = sk-l) 

k, l=o 

where sk is the Newton sum.* To obtain results (1.3) from this quadratic 

form, for example, requires more work than is shown in [ 5 I. 

The method proposed by Liapunov [5 I, and also the method of conformal 

mapping of the inside of a unit circle in a complex plane p into the left- 

half plane, both show that in order to have all roots of the equation 

(1.2) equal to unity in magnitude the roots of certain n-th degree equa- 

2r 
l Translator's note: Newton sum is sk = 3 pik, where pi is a root of (1.2). 

1 
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tion must be real, and the coefficients of this equation would be linear 

combinations of the coefficients of the equation (1.2). When RI = 3, the 
above condition will define a certain part of a complicated third-order 

surface in the space of coefficients a1a2a3. 

An analog of the square shown in Fig. 1, is a hyperparallelepiped in 

the space a1a2, . . . . am with edges parallel to the coordinate hyperplanes 
which could be determined relatively easily. Let us proceed to do so, 

Let us first determine, in the equation (1.2), the intervals of 
variation of the coefficient aP(p = 1, . . . , m) such that if a is in the 

interval, then the trivial solution of the system (1.1) wouldtLbe unstable, 
whatever the values of the remaining I - 1 coefficients. Since the coeffi- 
cients a 

P 
is the sum 

where pj(j = 1, 2, . . . . 2m) are roots of the equation (1.21, and the 

sum is taken over all combinations of indices of the sequence 1, 2, . . . . 

2n, it is clear that the interval 

C,k < a, < 00 (1.4) 
CCgII is the number of combinations of 2m elements taken p at a time) is 
ohe of the required intervals. 

If p is odd 

[A = 2v - 1 (v = 1, . . .) erit f jlB + 1)) 

then the interval 

-- 00 < azv+ < - CiYT' 

is another one of the required intervals. 

(1.5) 

‘Ibe lower limit in (1.4) is the greatest lower bound [ infimum 1 , (the 
upper limit in il. 5) is the least upper bound [ supremum 1 ); hence if 

Pl = .., =p 

T” 

= 1 (pl = . . . = pzs = - 1) and the elementary divisors of 

the matrix X 01 - PI,, are simple, then the trivial solution of the 
system (1.1) is stable and 

a, == C& (atv _1 z - C$;;l) ‘, 

Determination of intervals similar to (1.5) for even coefficients is 
not as simple as in the case of the odd ones. 

Let p = 2, and let us find the smallest value of the coefficient 

uz =- [‘ips + , . . + ~ljiW$ + ?2Pa + . . - + P2Ps” -f- 1 * . + pzm-.lp~m 

such that all the roots of the equation (1.2) (m >, 2) equal unity in 
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magnitude. Let 2k roots equal G 1) and 2 m - 2 k roots equal unity. The 

number of negative roots must be even because the constant term in the 
equation (1.2) equals unity. Without loss of generality we can assume 

that 2 k < m, because if 2 k > m, then we could change signs of all the 
roots, which would leave the sign of a2 unchanged. Thus, the number of 

terms in the expression for a2 which equals unity is C2i 

4k(m- k) terms equal (- 11, and 

C2r_2i and 

a2 = C,k2 + Ci,n-2k- 4k(m-k)== 8k2-8mk + 2mJ- m 

The smallest value of a2 corresponds to 2 k = m, when m is even, or to 
2k =m- 1, when m is odd. When 2 k = m , we have a2 = - m, and when 2 k= 

m - 1, we have a 
2 
= - (m - 2). Thus, if the following inequality 

a2<-m+l-(-l)m (1.6) 

is satisfied, the trivial solution of the system (1.1) is unstable 

irrespective of the values of the remaining coefficients in the equation 

(1.2). 

Let us apply the inequalities (1.4), (1.5) and (1.6) to the system 
(1.1) of the sixth order, whose corresponding equation (1.2) has the form 

p6 - a# + a,p 4 - a,p” + a,$ - alp + 1 = 0 

Let us construct the parallelepiped: 

-6s<u,<6, -l<u2<15, --20<a,<20 

The region outside the parallelepiped belongs to the region of in- 

stability; that is, if any of the six inequalities 

al < -6, al > 6, a2 < -1, u2 > 15, as < - 20, a3 > 20 

is satisfied, the trivial solution of the system (1.1) (when m = 3) is 

unstable. None of the six inequalities considered separately could be 

sharpened, because the region of stability touches the constructed 
parallelepiped at each of its six edges. 

The attempt to obtain inequalities similar to (1.6) for the remaining 

even coefficients was unsuccessful and numerical methods had to be used. 

Let p = 4 and let us find the smallest value of the coefficient 
- 
aA = plpZp3p4 + . . . + p2m-3?2m-2?211L-1p2m 

such that all roots of the equation (1.2) (m > 4) equal unity in magnitude. 
Let 2k roots (2k< m) equal t-l), and 2m- 2k roots equal (+l). Let 
the number of terms equalling ( - 1) in the expression for a,, be N2k. ‘Ihen 
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a4 = - N,rs + (& - Nzk) = C& - 2N2,< 

and the problem consists of finding the greatest value of Nzk over all 

natural numbers k satisfying the inequality 2k < m. It is readily seen 

that 

N, =c; c&_;, N4 = C:C,,_: f C;C,,_:, . . . 

NZk= C&C,,_,,” + C,EC2& = 4 (- k2 _t mk) (4k2 - 4mk + 2m2 - 3m f 2) 

‘Ihe greatest value of Nz k for m = 4, 5, 6, 7, 8, 9 and also the 
smallest value of a,, as obtained from computations are tabulated below: 

m= 4 5 6 7 8 9 
(Nsh.1 gr ~40 112 256 520 928 1560 

2k= 2 2 4 4 4 6 
(aa) sm = -10 -14 -17 -36 --36 -60 

In the general case for an even coefficient a2,, the problem consists 
in finding the greatest value of N2 k over all natural numbers k satisfying 

the inequality 2 k < m. ‘Ihe expressions for N2 k are 

2. The equation (0.2) will now be investigated in greater generality, 

assuming that 0 < a < 1, and regarding a = 1 as the limiting case. The 

conditions 

Iavl<G (v=l,...,n-1) (2-l) 

are necessary for the stability of the solution of the system (0.1)) be- 
cause if any one of these conditions is not satisfied, at least one of 

the roots of the equation (0.2) will be greater than unity in magnitude. 

It should be mentioned that even more rigid conditions than (2.1) could 
be obtained. 

Let us limit our investigation to finding the interval of variation 
of the coefficient al, for which the trivial solution of the system (0.1) 

is unstable irrespective of the values of a2,a3, . . . , an_i. The product 
of the roots pl, p2, . . . , p, = a; therefore, we can assume 
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p1=. . . =p,,_k=i, 

k 
p,,-_k+l = . . . = pn = l/i (h = 1, . . .) II) 

which gives the value of a1 as 
k 

al=pl+...+pn=n-k+k~/OC 

We shall prove the following inequality 

n-k+kJ?E> 
k+l 

n-(k+l)+(k+l)l/G @=I,..., n-i) 

‘Ihe above inequality can be written in the ion 

1 

f(z)=kzk+l-(k+l)zk+l>O (z = aW+l), 0 < z < 1) 

which is obviously valid, because 

(2.2) 

f!O) = I, 1(l) - 0, f’(z) = -k(k + l)zk-'(1 -z) < 0 (O<a<l) 

Ihus, under the conditions 

IpVI<l] (V-~,...,+ pl...pn=a (2.3) 

the greatest value of ai is given* by the expression (2.2) when k = 1, 

and it equals n - l+ a. 

‘Ihe least value of aI under conditions (2.3) for n even equals l- a - n, 
and for n odd equals l+ a - n. 'lhus, if 

a,<-n+l-(-l)na or aI>n-(l-a) 

then the trivial solution of the system (0.1) is unstable. 

(2.4) 

'Ihe necessary and sufficient conditions for the roots of equation (0.2) 

to lie inside unit circle are givenby Schur's theorem [8,9 1 (which does 
not apply to equation (1.2) 1. It should be mentioned that Schur's algo- 

rithm is almost as difficult as solving the Hurwitz problem. 

As an illustration, let us show the regions of stability in the 

spatial coefficients of equation (0.2) when n = 2 and n = 3. 

When n = 2, the region of stability is defined by the inequalities 

0 < a < 1, (a 1 < l+ a (the points a = 1, a = + 2 must be investigated 
separately). hen n = 3, the region of stab1 Ity is defined by the 4. 

. Probably, under conditions (2.3), the values p1 = . . . = P,_~ = 1, 

p, = a define also the greatest values of the remaining coefficients 

in equation (0.2). 
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inequalities a2 > al - 1 + a, a2 < a al + 1 - c2, a2 > - al - a - 1, and 
for a fixed a it is represented by the interior of a triangle in the 

plane cl, c2 (Fig. 2). ‘Ihe perimeter of the triangle must be investigated 

separately. 

3. Following Liapunov [ 2,10 1 , let us, together with the system (0. l), 

investigate an auxiliary system 

dx/dt= pax 

and seek the fundamental matrix X(t, c ) in the form of a series 

x (t, E) = X0(t) + E x1 (t) + Ez x2(t) + . . . , x0 (0) = 1, 

Xk (0) = 0 (k = 1, 2, . . .) 

(3.1) 

(3.2) 

-Fig. 2. 

Substituting (3.2) in (3.1) and equating terms of the same power in 
6, we obtain a sequence of matrix differential equations: 

d Xo dX, 

dt= 0, --&- = A(t) Xk__l (k = 1, 2, . . .) 

which can be integrated for given initial condition, yielding 

t 

x0 (0 = I,, X/t (4 = 1 A(h) &--l(b) dt, (k = 1, 2, . . .) 

0 

Liapunov proved that the matrix series (3.2) is absolutely convergent 
for all values of c and is also uniformly convergent in every finite 
interval of variation of t. By substituting c = 1, we could express the 

fundamental matrix of the system (0.1) as: 

where 

x (0) = x (w; 1) - I, + x1 (0) + x, ((0) + . . . 
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?ke first coefficient of equation f0.2) equals 

a, z7.z sp x (0,) :r= n + n,(l) + . . 1 + u$h‘) + . . . 

(k = 2, 3,. .) (3.3) 

(3.4) 
where 

We shall now derive expressions for the other coefficients in equation 

(0.2). The matrix function A(t) is periodic, hence the matrix X(t + 01 is 

also the solution matrix of the system !O.l). Moreover, we have the 

identity X!t + G.B) = X(t) X(o), because the right-hand member of this 

identity is also the solution matxix of the system (O.l), and by virtue 

of the condition X(Q) = I,,, both members are obviously equal when t = ft; 

hence they must be equal for any value of t by the uniqueness theorem. 

Applying the above identity n - 1 times we find that X(t + (n - 1) w) t 

X(t) X”“fol and substituting t = w we obtain 

x (no) = X"(W) (3.6) 

The coefficient uv(v = 1, L.., n - 1) in equation (0.2) equals the sum 

of the principal minors of v-th order of the matrix X(o), that is 

&=%(X(W)) (v = 1, . .., n - 1; 51 (X (cd)) 55 sp x (0)) 

For an arbitrary matrix C the following relation: 

al(G)= cQa(C)- 23, (C) 

is always valid, where o,(C> is the sum of eigenvalues 

and o,fC) is the sum of products of these eigenvalues, 

time. 

Using (3.6) we obtain 

of the matrix C, 

taking two at a 

t-l? EC 02 (X (co)) = + I*l2 (X ((4) - *i (X (2g)l 
Or 

a‘2 = f [a$* - al (ZfFlf] (3.7) 

To derive alf20) we substitute in formulas for al, 2w for 0. 
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In the general case the coefficients av are obtained from the Waring 
formula (see, for example, [ 11 I, Section 1271, which involves the trace 
of the matrix Xk(w): 

a, = (-1)’ r, (-l)j’+-+jy lj,2j,. . . vj; 
/I! . . . I’,! 

&zi (alo)+. . . a, (YO)fV 

‘Ihe above sum is taken over all integral non-negative j, . . . jy, 
satisfying the condition 

ji + 2jz + . . . + Yjv = v, 

a, (ko) = sp X (kw) = sp XK ((I)). 

4. Let us investigate the following system of m linear differential 
equations of the second order with sectionally continuous periodic 
coefficients: 

d%i 
zc + pi1 (t) Y, + * ’ * 4 Pim (l) ym = 0, Pij (1) = Pji (q (i, j = 1, . . ., m) 

It can be written as one second-order vector differential equation: 

2 + P(t) y = 0, y?f, 

i 1 
P (t -t- w) = P (t) = Npij it) 11: (4.1) 

Ym 

The system (4.1) can be reduced to a special case of the system (1.1) 
if x is regarded as the direct sum of the vectors y and d y /d t , and 

H(f) = yro , c i *4(f) = J,, II (1) = O rm 
m C-P(f) 0 i 

Let us write down equations (3.3): 

(x =z 1, 2, : . .) 

11 

n,= --jdf,\ p, cl&, I), -= F, = 0, (i, = -- ‘.’ t) P, dt, s 
0 0 0 

I&k_, = G2+l = 0 
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‘&c-l = (-1)” r dt, 1 dt, . , . 

%k--2 

’ I p1p3 . . . p?k--l &k--l 
0 0 0 

b?k = (-1) 5 dt, \di, . . . 
%k--2 

\ P,P, . . . Pzh. dt2/;, D,, = FBk = 0 
*I 

0 0 0 

G?k = (-1)“i dt, id,, , . . 

fzk-2 

j lg+_l P,P:, . . . 1Jzx._-1 df,,+, 

;, Ii 0 

where k = 2, 3, . . . and for the sake of brevity Pi = P( t i). 

The expression for X(o) is: 

t, P, dt, + . . . 

0 0 

x2, (0) -= - [ P, dt, + [ I’, dt, i’ d,, [ P:< dl:, - . . . 
0 0 I, 0 

The first coefficient in equation (1.2) equals 

u1 = sp X (m) = 2m -CL,“) + ~~‘2) -~- + ( -l)'c~l,f,'i) + . . . (4.2) 

where 

1, 

a,(‘) = sp [ dt, j (PI + P,) dl,, q@~=spS’df,j.dt,~dt31.(P,P3+P,P,)dt, 

I, 0 0 0 0 0 

12k--1 

s 
PII?, . . . pZk-1dt2k + 

0 0 0 
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hk-1 

P2P,. . . P,k d&l, 1 (4.3) 
0 0 0 

It is well known that the trace of two square matrices does not depend 

on the order of the factors. It follows that the trace of the product of 
an arbitrary number of matrices remains invariant with respect to the 

cyclic permutation of the factors. 

let us perform the Liapunov transformation [ 10 1 on the formula (4.3). 

From the transformation 

0 t1 

s s dt,‘P,dt,=iP~dl,idl,=i(w-i,)P,dl,=i(o--t,)P,dt, 

0 0 0 tr 0 0 

we obtain 

a,(‘)=sp[iP,df,~df,+idf,5P,dl,]= 

0 0 0 0 

0 

= sp 
ES 

tlP,dt,+ o(w-t,)P,dt 
5 

r] = osprP(l)dt 
0 0 0 

A similar reduction could also be obtained in a general case. ‘Ihe 

multiple integrals of order 2 k in formula (4.3) are reduced to one 

integral of k-th order. Indeed, both integrals in formula (4.3) could be 

considered as integrals over the variables tl, tg, . . . , tzk, satisfying 

the inequality o > t1 > tq > . . . tzk > 0. 

We shall perform the integration of the first integral with respect 

to the variables t2, tU, . . . , tzk and of the second integral with respect 

to the variables tl, t3! . .., tgk_l. Then, naming the k remaining variables 

tl’ t2’ a**, tk we obtarn 

(4.5) 

al(k) = sp o dtr t’ dt, . . . \ 
s 1 

tk--l 

((0 - t, + tk) (& - tz) . . . (fk-_1 - tk) PIP,..’ . Pk dt, 

0 0 0 

The above formula is analogous to formula (10) of Liapunov [ 10 1 . 
Introducing the matrix function 

1 P (t) dt I= Q (t) 

and performing integration of the first integral in formula (4.3) with 

respect to the variables tl, t3, . . . , t2k_i, and of the second integral 
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with respect to the variables t2, t,,, . . . . tzk, making the cyclic permuta- 

tion in the product of matrices and naming the remaining variables tl, 

t*, ***, tk we obtain 

alfk) = sp \ s 
dt, - dt, . . . \ -(s - QI+ Qk) (Q1 +Qz) . . . (Qk--l - Q/x) & (4.6) 

Ii 0 0 

where 

S = 1 P(t) dt=o P,,, Qi = Q (ti) 
0 

The formula (4.6) is analogous to the formula (11) of Liapunov [lo 1. 
The first three terms in the series (4.2) could be expressed by formulas 
without multiple integrals. We mite the periodic matrix function P(t) 

in the form P(t) = Pep + @ ( t), where the periodic matrix function Q, ( t) 
satisfies the condition @ = 0. hitting derivations similar to those 

shown in Sections 4, 15, %, 17 of [lo 1 , we establish the final result 

0 

a,(‘) = 63 spP,,, a,(2) = q-l 
II 
&4P,+6J 

s 1 b2dt 

0 

0 

Q(3) = sp [ 1 
360 

69 P,++69Pcp 5 b2dt + 

0 

(4.7) 

'lhe last formula in (4.7) is analogous to the formula (37) of Liapunov 

110 I. In the latter the last term vanishes when m = 1 (the scalar case). 

5. let us assume that all elements of the symmetric matrix P(t) are 

non-positive: 

Pij(t)<O (i,i=i,...,m; O<t<0) (5.1) 

All terms of the series (4.2) are positive; hence al > 2n1. By virtue 

of the inequality (1.4) when p = 1, we deduce the following theorem: 

If all coefficients in the system (4.1) can assume only negative values 

(or zero), then the trivial solution of the system (4.1) is unstable. 

The above theorem is an extension of Theorem I of Liapunov (Section 

l Translator’s note: The author is using the subscript cp to denote the 
mean values of a function. 
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49 C2 I) for the system (4.1). Liapunov proved another theorem (Section 

52 [2 1 ), which for the system (4.1) could be formulated as follows: 

If all eigenvalues of the matrix P(t) (which are real) are non-positive 

for all values of t (0 < t < w ), then the trivial solution of the system 

(4.1) is unstable. 

Liapunov mentioned that his 'lheorem I (Section 49 [2 I ) is a special 

case of the above theorem. This raises the following question: Is it 

possible to obtain other criteria of instability for the system (4.1), 

which in the scalar case (m = 1) would coincide with Theorem I of Liapunov 

(Section 49 12 I)? 

Ch the other hand the first Theorem in Section 5 is valid, whether the 
matrix P(t) is symmetric or not. 'Ihe essence of the problem is that in 

the most general case of the system (0.11, the conditions (2.1) are 

necessary conditions for the boundedness of all solutions. From the 

formula (3.5) it follows that if all elements of the matrix A(t) are non- 

negative, then all terms of the series (3.4) are positive, and a1 > n; 

hence the solution of the system (0.1) is unbounded. Moreover, in this 

case, by a Theorem of Perron U12 I, Chapter 13) there exist vector solu- 

tions x,(t) of equation (0.1) with non-negative coordinates such as 

xO(t + w) = p,x,(t) (pO > l), where p,, is the magnitude of the largest 

root of equation (0.2). 

'Ihe statement that the trivial solution of the system (0.1) is unstable 

under the conditions 

aij (t) > 0 (i, j = 1, . . .( n; O<t<w) (5.2) 

is valid except when sp A(t) I 0, which includes the system (0.1) in 

(5.2) we obtain canonical form. When sp A(t) f 0 then from the conditions 

(I> 

s 
spA(t)dt > 0 

0 

which determines the instability of the trivial solution 

Certain results for the case p,,(t) > 0 (i, j = 1, . . . 

(see introduction). 

) In; o< t,(o), 
and for the general case, when the'elements of the matrix P(t) have 

alternating signs, are given in the author's doctoral dissertation 

"Certain problems of stability of periodic motions." (Inst. Mekh. Akad. 

Nauk SSSR, 1957). 

The author is profoundly grateful to his heather N.G. Chetaev for his 

valuable advice. 
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